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ATTACHMENT 2:  Probabilistic Risk Assessments and Monte-
Carlo Methods: A Brief Introduction

Risk assessments are a crucial part of EPA’s pesticide regulatory  program and have been for over 25 years. 
These assessments are used to estimate impacts on human health and the environment from the use of a given
pesticide. Agency policy is that risk assessment should be conducted in a tiered approach, proceeding from
simple to more complex analyses as the risk management situation requires.  The Agency has traditionally
used “deterministic” assessments involving point estimates of specific parameters to generate a single
estimate of exposure and risk based on various assumptions about the concentration of pesticide in any given
medium (e.g., food, water, air etc)  and the amount of that medium  consumed,  breathed, or otherwise
contacted.  Deterministic assessments can begin with worst-case assumptions (for example, residues on foods
at tolerance levels), then can be refined by more realistic values that remain point estimates (for example,
average residues from field trials).  Even with a tiered approach, each deterministic assessment provides
single values for estimates of exposure from a given pathway. Such single-value risk estimates do not provide
information on the variability and uncertainty that may be associated with an estimate.  

Current Agency Policy (5/15/97) is that probabilistic analysis techniques (of which Monte-Carlo is one
example) can be viable statistical tools for analyzing variability and uncertainty in risk assessments, provided
they are supported by adequate data and credible assumptions. Probabilistic techniques can enhance risk
estimates by more fully incorporating available information concerning the range of possible values that an
input variable could take, and weight these values by their probability of occurrence. As an example, a
particular food commodity (e.g., tomatoes) might contain a range of pesticide residues for any given
pesticide, with a large percentage of tomatoes consumed actually containing no residues at all (since not all
tomatoes are treated).  In addition, individuals may or may not consume tomatoes on any given day and, over
time, are expected to consume varying amounts of this food item due to varying daily consumption patterns. 
Probabilistic risk analysis permits OPP to assess the range of exposures (and their associated probabilities)
which result from combinations of the various residue levels and consumption patterns.   The resulting output
of a probabilistic determination is a distribution of risk values with  probability assigned to each estimated
risk.  Some of the major differences between deterministic and probabilistic estimates are summarized in the
table below:

  

Deterministic Risk Assessment Probabilistic Risk Assessment
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C Pesticide concentrations and  potential C Takes into account all available
exposure factors are expressed as point information and considers the probability
estimates.  of an occurrence.

C The risk estimate is also expressed as point C The risk estimate is expressed as a
value.  The variability and uncertainty of distribution of values, with a probability
this value are not reflected.  assigned to each value. 

C The distribution reflects variability and
uncertainty.

 

Tiered Approach to Risk Assessment 

As risk assessments are refined, assumptions can proceed from more conservative (more health protective) to
more realistic reflections of exposure.  As noted above with the example of residues on food, such
refinements can be applied to deterministic assessments.  Probabilistic analyses, including Monte Carlo,
represent numerical techniques to reflect more realistic assumptions.  For example, Tier I of acute dietary
assessments as conducted by OPP includes conservative assumptions such as: all foods consumed by an
individual in any given day were treated with the pesticide in question (if registered for use on that food) and
that residues are present in those consumed foods at the maximum legal limit.  Monte-Carlo techniques fully
applied to this situation would allow  incorporation of information concerning the percent of the crop which is
treated, the amount of pesticide applied and timing of its application, and the range and distribution of residue
values expected to be found.  This information is useful because a particular food (e.g., tomatoes) might
contain a range of pesticide residues for any given pesticide, with a large percentage of tomatoes consumed
actually containing no residues at all (since not all tomatoes are treated).  In addition, individuals may or may
not consume tomatoes on any given day and, over time, are expected to consume varying amounts of this
food item due to varying daily consumption patterns.  Any variability and uncertainty is explicitly included in
the analysis and is fully disclosed. 

The Origin of Monte-Carlo Techniques

Monte-Carlo techniques have been used since the 1940's when they were first developed by physicists
working on the Manhattan project.  Only recently, however, have personal computers become sufficiently
powerful and widespread for Monte-Carlo techniques to be widely applied for health risk assessments. 
Modern spreadsheet programs now provide a range of critical facilities to help to illustrate and order a model
including advanced statistical functions, charting, etc.  And the simplicity and capabilities  of recently
introduced commercial Monte-Carlo software allows these techniques to become virtually all but routine.  

The origin of the name “Monte-Carlo” relates to the famous gambling city in Monaco, but the relation to
gambling applies only to the probability of a given event occurring over the long term.   Although one cannot
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know precisely which number will appear on the next roll of a craps die or the spin of a  roulette wheel, one
can predict over the long term (and as precisely as desired) the frequencies associated with each outcome. 
Monte-Carlo numerical techniques similarly cannot predict exactly which exposures will occur on any given
day to any specific individual, but can predict the range of potential exposures in a large population and each
exposure’s associated probability.     

What is Monte-Carlo Analysis?

Monte-Carlo analysis is simply one of several mathematical techniques for performing probabilistic risk
assessments. The Monte Carlo technique, as applied to exposure assessment, involves combining the results
of hundreds or thousands of  random samplings of values from input probability distributions in such a
manner as  to produce an output distribution which reflects the expected range and frequency of exposures.
Although computationally-intensive, Monte-Carlo techniques themselves are not complicated.  Assessing a
Monte-Carlo analysis requires examining the appropriateness of assumptions, judgements,  and data sets
which are key inputs to the mathematical procedures.  

The first step in a Monte-Carlo simulation is the construction of a  model that accurately represents the
problem at hand.  The makeup of the model usually entails a mathematical combination (addition,
multiplication, logarithms, etc.) of the model input variables which can be expressed as probability
distributions. If, for example, one desires to simulate the daily dietary pesticide exposure to individuals from
a particular pesticide in tomatoes, this can be  simulated by repeatedly drawing random values from two
separate distributions: one distribution  represents tomato consumption by individuals while the other
represents  pesticide levels in tomatoes. Here, the output variable (daily pesticide exposure)  is defined as the
product of the two input variables (tomato consumption in grams/day and pesticide residue concentrations in
ug/g).  Each random pair of input variables obtained from repeated independent samplings of the input
distribution are multiplied together and the product used as one point in the distribution for the output
variable.   In general, this process is repeated thousands of times and the thousands of output products
generated, taken together, form a distribution of frequencies. This technique is more fully illustrated in the
box on the following page:   
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Suppose that our two input variables are defined as a and B where a = {2 , 4, 6, 8, 10},  B = {10, 20,
30, 40, 50}, and our output variable C  is defined as the product of a and B (i.e., C = a x B).  Set a
might represent the concentration of a pesticide in tomatoes (in ug/g) and Set B might represent the
daily consumption of tomatoes (in g/day). We wish to determine the range and frequency of potential
values of C (which in this case would represent daily exposure to the pesticide in ug/day) . Inspection of
the input data immediately reveals that the value for C (daily exposure)  can range from a low of 20
ug/day (i.e., 2 x 10) to a
high of 500 ug/day (i.e.,
10 x 50) and that each
of these two extreme
values should occur
approximately 4% of
the time (i.e., 1/5 x 1/5
= 1/25 = 4%),  Monte-
Carlo methods permit
us to evaluate all values
that can be generated
for the value C along
with each of  their
associated probabilities. 
The Monte-Carlo
method randomly chooses a single pesticide concentration value from Set a and a single tomato
consumption value from Set B.  These two values are multiplied together (to give daily pesticide
exposure, C)  and this resultant  value stored.  This process is repeated thousands of times with all
values of C eventually  plotted as a frequency histogram as shown above. Note that the lowest value is
20 ug/day and the highest value is 500 ug/day, just as originally predicted.  Note also that these two
values each occur approximately 4% of the time, just as (again) predicted from our original inspection. 
Although this example uses discrete values for sets a and B, Monte-Carlo modeling can also be
performed when the input variable are described as continuous variables.   

   

Regardless of  how accurately the fitted distribution conforms to the data, or what method of sampling is
used, the analyst has to set up a model that reflects the situation being assessed.   According to Vose’s
Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modeling, the cardinal rule of risk analysis
modeling is: “Every iteration of a risk analysis model must represent a scenario that could physically occur.” 
Following this rule will lead to a model that is both accurate and realistic.   As an example, it would be
improper to model a cow diet as a random sampling of feeds with established tolerance for the pesticide of
interest since many of the diets generated in such a manner would be unreasonable with respect to the
roughage/nonroughage components, carbohydrate/protein mix, commodity combinations, and economic
constraints.  In short, blind application of Monte-Carlo techniques without regard for the reality of the
generated scenarios will produce  absurd results with no basis in reality.  The analyst should ensure that each
of the hundreds or thousands of iterations is a scenario with real-world possibilities.

It is often tempting in risk analysis modeling to include very unlikely events that would have a very large
impact should they occur.  A rare event of concern is defined as an event that has a low probability of
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occurrence but a potentially high impact on the results of a  risk analysis. The expected impact of a rare event
is determined by two factors: the probability that it will occur and  the distribution of possible impacts.  For
example, widespread systematic illegal use of a pesticide or gross calibration errors in a pesticide’s
application  might be a situation which occurs to some unknown (but relatively insignificant) extent.   Since
the probabilities of these events are so difficult to quantify,  their determination provides a stumbling block
for the analyst.  However, since it is  impossible to cover all scenarios that might exist and to calculate the
probability of such occurrence, including the rare event in the general model will not increase our
understanding of reality and will limit the clarity of the model.

Random Nature of the Monte Carlo Analysis.

Integral to any Monte-Carlo analysis is the generation of random numbers.   Similar to rolling dice, the
software has a ‘random number generator’ that produces a random sequence of numbers.  Two main forms of
sampling are Random Sampling (also called Monte Carlo Sampling) and Latin Hypercube sampling. 
Random or Monte Carlo sampling will evaluate the probability distributions in a purely random fashion, and
is useful in trying to get the model to imitate a random sampling from a population or for doing statistical
experiments.  However, the randomness of this sampling suggests that, unless a very large number of
iterations are performed, it will over-sample some parts and under-sample other parts of the distributions.
Because for nearly all risk analysis modeling exploration of the distribution extremes (the “tails”) is
important, exact reproduction of the contributing distributions of the model becomes essential. 

Latin Hypercube sampling (LHS) addresses this issue by providing a sampling method that appears random
but that also guarantees to reproduce the input distribution with much greater efficiency that the random
sampling.  LHS uses a technique known as stratified sampling without replacement.  It breaks the probability
distribution into ‘n’ intervals of equal probability, where ‘n’ is the number of iterations to be performed on
the model.  Then, at random, one sample is drawn from each section, forcing, this way, an equal-chance
representation of all the portions of the distribution.  The Latin Hypercube method leads to a predictable
uniformity of the sampling of the distribution.

For More Information

Use of Probabilistic Techniques (Including Monte Carlo Analysis) in Risk Assessment,
Memorandum from the Office of the Administrator,  U.S. Environmental Protection Agency,
May 15, 1997

Policy for Use of Probabilistic Analysis in Risk Assessment at the U.S. Environmental Protection Agency. 
U.S. EPA, Office of Research and Development, May 15, 1997.  (http://www.epa.gov/ncea/mcpolicy.htm)

Vose, David.  Quantitative Risk Quantitative Risk Assessment: a Guide to Monte-Carlo Simulation
Modeling.  John Wiley and Sons (1996)


